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A STUDY OF UNSTEADY MAGNETOHYDRODYNAMIC FLOW 
AND HEAT TRANSFER 

by 

Ralph M. Singer 

ABSTRACT 

The unsteady, combined free and forced convective 
flow of an electrically conducting fluid through a t ransverse 
magnetic field is analyzed. Allowing the channel wall t emper 
ature to vary l inearly with the axial coordinate of the duct 
allows a fully-developed flow situation that l inearizes the 
governing equations and permits an analytical solution. The 
unsteadiness may occur because of variations in the axial 
p re s su re gradient, wall temperature , or internal energy 
generation ra te . The effects of the thermal and magnetic 
Prandtl numbers (Pr and Pr^^), the Hartmann number (M), 
the Rayleigh number (Ra), and internal energy generation 
upon the flow and heat transfer is studied. Oscillatory 
behavior is observed for large values of Ra and M and for 
Pr near unity, and the length of the transient period is found 
to depend strongly upon these pa ramete r s . 

INTRODUCTION 

In recent years , considerable interest has developed in magneto-
hydrodynamic channel flow because of its application to energy conversion 
schemes, e.g., power generators , electromagnetic pumps, and flow m e t e r s . 
Although a wealth of information exists on the steady, laminar flow of an 
electrically conducting fluid through a channel in the presence of a t r an s 
verse magnetic field (e.g., References 1, 2, 3, 4), only a few studies are 
available that deal with unsteady MHD channel flow. Results of such 
studies a re of interest in the design of MHD devices because of possible 
instabilities or overheating that may occur during s tar t -up or shut-down. 

Unsteady MHD flows across flat plates are analyzed in several 
papers , but these papers will not be discussed here and attention is r e 
stricted to equivalent channel-flow problems. To this author 's knowledge, 
the ear l ies t work of this kind was presented by Chekmarev(5) who con
sidered a paral lel-plate channel with infinitely thick, electrically conducting 
walls, and an initial applied magnetic field. At zero t ime, a constant p r e s 
sure gradient is applied and the fluid is set in motion. Unfortunately, no 
numerical resul ts were presented. 



The c a s e of a p a r a l l e l - p l a t e channe l wi th w a l l s of inf ini te e l e c t r i c a l 
conduc t iv i ty and a sudden ly app l i ed c o n s t a n t m a g n e t i c f ie ld , coup led wi th 
e i t h e r a s t e p , s t e p - p e r i o d i c , o r i m p u l s i v e change in the p r e s s u r e g r a d i e n t , 
w a s s tud ied by Yen and Chang ( ° ) . T h e i r r e s u l t s w e r e l i m i t e d to only a few 
s e t s of the p h y s i c a l p a r a m e t e r s , and t h e r e f o r e the o s c i l l a t o r y a p p r o a c h to 
s t e a d y - s t a t e cond i t i ons which can o c c u r , was not o b s e r v e d . T h i s p a p e r w a s 
ex tended by TaoC^) who i n d i c a t e d the e x i s t e n c e of flow o s c i l l a t i o n s when the 
m a g n e t i c P r a n d t l n u m b e r w a s n e a r uni ty . In T a o ' s b r i e f no t e , only l i m i t e d 
n u m e r i c a l da ta w e r e p r e s e n t e d , and the ef fec ts of the H a r t m a n n and m a g 
ne t i c P r a n d t l n u m b e r s w e r e not fully d i s c u s s e d . 

This s a m e p r o b l e m w a s a g a i n so lved by Ogawa and S o n e ( ° ' by an 
a l t e r n a t i v e m a t h e m a t i c a l t e c h n i q u e , and r e s u l t s w e r e p r e s e n t e d on ly for the 
v e r y s p e c i a l c a s e of the v i s c o u s and m a g n e t i c R e y n o l d ' s n u m b e r s and a p r e s 
s u r e n u m b e r equa l to uni ty . 

The t r a n s i e n t flow of an e l e c t r i c a l l y conduc t ing fluid in a tube of 
a r b i t r a r y c r o s s s ec t i on s i t u a t e d in a m a g n e t i c f ield fo l lowing a s t e p - c h a n g e 
in the axia l p r e s s u r e g r a d i e n t w a s t r e a t e d by Uflyand^"' . The g e n e r a l r e 
su l t s w e r e s p e c i a l i z e d to the c a s e s of r e c t a n g u l a r and c i r c u l a r c r o s s 
s e c t i o n s , but no n u m e r i c a l da ta w e r e p r e s e n t e d . 

In the a f o r e m e n t i o n e d p a p e r s , only i s o t h e r m a l flow w a s c o n s i d e r e d . 
To the a u t h o r ' s knowledge , no r e s u l t s e x i s t for u n s t e a d y , c o n v e c t i v e MHD 
channel flow. S e v e r a l p a p e r s do e x i s t , h o w e v e r , t ha t d e a l wi th u n s t e a d y , con 
vec t ive channel flow in the a b s e n c e of a m a g n e t i c f ie ld . In c o m b i n e d f o r c e d 
and n a t u r a l convec t ion , Z e i b e r g and Muel le r^ ' found tha t an o s c i l l a t o r y 
a p p r o a c h to s t e a d y - s t a t e cond i t i ons fol lowing a s t e p c h a n g e in the wal l 
t e m p e r a t u r e can o c c u r . The a m p l i t u d e and f r e q u e n c y of t h e s e o s c i l l a t i o n s 
(which o c c u r both in the ve loc i t y and t e m p e r a t u r e ) i n c r e a s e a s t he R a y l e i g h 
n u m b e r i n c r e a s e s . The effect of the t h e r m a l P r a n d t l n u m b e r on the t r a n 
s ient phenomena was a l s o i n d i c a t e d for v a l u e s of P r f r o m 0.01 to 100. 

Tao^ ' c o n s i d e r e d a s i m i l a r p r o b l e m to tha t in (10), e x c e p t a c i r 
cu l a r tube was u s e d and a d i f fe ren t m a t h e m a t i c a l a p p r o a c h w a s u t i l i z e d . 
Again, damped o s c i l l a t i o n s in the ve loc i t y w e r e o b s e r v e d at l a r g e v a l u e s of 
the Rayle igh n u m b e r following a change in the ax ia l p r e s s u r e g r a d i e n t . 

Appa ren t l y , the t r a n s i e n t , c o m b i n e d fo rced and n a t u r a l c o n v e c t i v e 
channel flow of an e l e c t r i c a l l y conduc t ing fluid in a t r a n s v e r s e m a g n e t i c 
field h a s not been s tud i ed . T h i s p r o b l e m i s of i n t e r e s t in the u l t i m a t e d e s i g n 
of an MHD power g e n e r a t o r b e c a u s e of p o s s i b l e e l e c t r i c a l o v e r l o a d i n g d u r i n g 
the o s c i l l a t o r y t r a n s i e n t p e r i o d in s t a r t - u p o r s h u t - d o w n . * A l s o , s i n c e in 
al l such g e n e r a t o r s , an e x t r e m e l y hot fluid ( e .g . , l iquid s o d i u m at 1200°F) 
will be u s e d , the p r o b l e m of hea t t r a n s f e r f r o m the fluid to the channe l w a l l s 
would be i m p o r t a n t , 

* Since the power output from an MHD generator is proportional to the square of the mean flow velocity 
velocity oscillations can cause large power oscillations. 



In this paper, the unsteady, combined convective flow of an electr i
cally conducting fluid through a ver t ical , paral lel-plate channel in a hor i 
zontal magnetic field will be considered. Unsteadiness can be caused by 
prescribed variat ions in the axial p r e s su re gradient and/or the wall 
temperature . The flow and heat t ransfer will be assumed to be fully de
veloped, and the conditions under which this assumption is valid will be 
indicated. This assumption, along with that of perfect electrically con
ducting walls, leads to a system of l inear part ial differential equations 
which are amenable to Four ie r and Laplace t ransformations. 

MATHEMATICAL FORMULATION 

The energy and MHD equations (in mks units) for incompressible, 
nondissipative, viscous flow are (12) 

I Y = Vx (VxB) + v^V^B, (1) 

V • V = 0, (2) 

p [ ' ^ + ( Y ' V ) v l = -Vp +;,iV^V + -^ (VxB) X B + Pg, (3) 

Lot J / i Q — ~ — 
and 

1 ^ + V • VT = aV^T +.5_, (4) 
at— pc 

where it has been assumed that no excess charges a re present and the d i s 
placement current and viscous and ohmic dissipation are negligible. Also, 
all physical proper t ies (except the density in the formulation of the buoyancy 
term) are assumed to be isotropic and constant. 

For nonsteady, fully developed flow and heat t ransfer , it can be shown 
that V = [u(y,t), 0, 0] and B = [B (y,t), BQ, O], (see Reference 6), so that 
equations (1) through (4) reduce to (the coordinate system is shown in 
Figure 1) 

SB^ Su a ' B ^ 

ht - " " a y ^ " - - ^y^ 

n ^ ^P S^U B o ^ ^ X r o , .^ M / A \ 

0 
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0 = - ^ -
OP X X 

by Mo Sy ' 
(7) 

and 

S T , ^ ar ^ ,^(d^ ^d^T 
St Sx 

Q 

P R ' = R 

(8) 

w h e r e the s u b s c r i p t R r e f e r s to a r e f e r e n c e t e m p e r a t u r e , and the b u o y a n c y 
t e r m in equa t ion (6) c a m e f rom the a s s u m p t i o n 

3^ [ I - P ( T - T j ^ ) ] . (9) 

\ 
FLOW 

F i g . 1 

P h y s i c a l Model and C o o r d i n a t e S y s t e m 

112-4417 

The d e t e r m i n a t i o n of the funct ional f o r m of the t e m p e r a t u r e f ie ld 
that will a l low a fully deve loped u n s t e a d y flow in the p r e s s u r e of a m a g 
ne t i c field is shown in Appendix A. 

F r o m the a r g u m e n t s in Appendix A, the g o v e r n i n g e q u a t i o n s for 
uns teady , fully deve loped MHD flow m a y be w r i t t e n in d i m e n s i o n l e s s flow 
as fol lows: 

bB_ 
bT 

S U J _ P . r 
SY \ P r . 

â B (10) 

"^/ aY 

i - | i = l ! H , f M ^ \ | | , R a e . G ( r ) , 
P-- ^^ aY^ I P - ^ m ^ Y 

( H ) 

and 

ae 
ST 

a^ 
aŶ  

U + F(Y,T ) - H ( T ) . (12) 
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where Pr is the thermal Prandtl number, Pr the magnetic Prandtl number, 
M the Hartmann number, Ra the Rayleigh number, G ( T ) a p ressure gradient 
term, H ( T ) a wall tempera ture gradient t e rm, and F ( Y , T ) an internal energy 
generation index.* 

To specify the initial and boundary conditions, the following situation 
is analyzed. 

Initially, for T < 0, some steady distribution of velocity, tempera
ture, and induced magnetic field exists; i.e., 

U(Y,0) = Ui(Y), 

e(Y,o) = e.(Y), (13) 

and 

B(Y,0) = B.(Y). 

and for subsequent t ime, T > 0> the forced-convection p ressu re gradient, 
wall tempera ture , and internal energy generation rate vary arbi t rar i ly with 
time. With no loss of generality, the boundary conditions are taken as 

U ( ± 1 , T ) = 0, 

e(±l,T) = 0, (14) 

and 

iB(±l,T) 
~~5^ 

= 0, 

which requires both channel walls to have equal tempera tures at any height 
for all time and requi res the walls to be perfect electr ical conductors 
[relative to the fluid; see (4)]. 

The detailed mathematics involved in the solution of equations (10), 
(11), and (12) with conditions (13) and (14) are presented in Appendix B. 

*See the Notation for definitions. 
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S T E P C H A N G E IN P R E S S U R E G R A D I E N T A N D W A L L T E M P E R A T U R E 

C o n s i d e r t h e f o l l o w i n g s i t u a t i o n : I n i t i a l l y t h e r e i s n o f l o w ( z e r o 

p r e s s u r e g r a d i e n t ) a n d n o h e a t t r a n s f e r ( t h e t e m p e r a t u r e s of t h e f l u i d a n 

t h e w a l l a r e b o t h e q u a l t o s o m e c o n s t a n t v a l u e , s a y T Q ) - S u d d e n l y , a c o 

p r e s s u r e g r a d i e n t i s i n n p r e s s e d i n t h e x - d i r e c t i o n , t h e w a l l t e m p e r a t u r 

i n c r e a s e d t o s o m e c o n s t a n t ( in t i m e ) l e v e l a b o v e t h e f l u i d t e m p e r a t u r e ( the 
g r a d i e n t of t h e w a l l t e m p e r a t u r e i n t h e x - d i r e c t i o n i s a l s o f i x e d a t s o m e 

c o n s t a n t l e v e l , A , o r e q u i v a l e n t l y , t h e w a l l h e a t f l u x i s f i x e d a t s o m e c o n s t a n t 
v a l u e , q ^ ) , a n d t h e f l u i d s t a r t s t o g e n e r a t e h e a t a t a u n i f o r m r a t e . F r o m 

t h e d e f i n i t i o n s of F ( Y , T ) , G ( T ) , a n d H ( T ) , i t i s s e e n t h a t F a n d G a r e c o n 

s t a n t a n d H i s z e r o f o r T > 0, A l s o , B m i = U^j^i = 6 r n i " ^ ' 

T h u s , t h e c o n v o l u t i o n i n t e g r a l s i n t h e a p p e n d i c e s c a n b e e x p l i c i t l y 

e v a l u a t e d , a n d t h e f o l l o w i n g e x p r e s s i o n s f o r U ( Y , T ) , e ( Y , T ) , a n d B ( Y , T ) c a n 

b e f o u n d f o r t h e c a s e s of ( P r / P r m ) = 1 a n d ( P r / P r m ) » ^•* 

U(Y,T) = 2_, (Y - H ) ] + l ( ' 3 ( m o , T ) s i n [ - ^ ( Y + l)J 

7'>o m ^ ̂ m ̂  -[l^(V.l)], (15)^' 

e(Y 

" • ^ | ( W - ( ¥ ) ' * • > • . 

'1 
-yVo 

G^V.5(m,T) + R a F m ^ a i m 

i n [ ^ ( Y + l ) ] + V , ( m o , T ) s i n [ ^ ( Y + l ) ] 

• 2_i ^'"'mJ in[f;(Y + l)], (16) 

• S i n c e t h e s o l u t i o n s f o r t h e t w o c a s e s a r e s i m i l a r , a n a b b r e v i a t e d n o 

t a t i o n w i l l b e u s e d w h e r e i n t h e f u n c t i o n s ^ i ( m , T ) w i l l b e t a b u l a t e d 

a c c o r d i n g t o t h e v a l u e of P r / P r r n . 

* * F o r P r / P r ^ = 1 , 7 ^ = (mT7/2) ' ' ( l - P r ) ^ - 4 M ^ ( m T r / 2 ) ^ P r - 4 R a P r ; 

w h i l e f o r ( P r / P r j „ ) » 1, y^ = (mTr/^)^ d " P"")^ " 2 M ^ ( m 7 T / 2 ) ^ P r ( l - P r ) 

+ M ' ' P r ^ - 4 R a P r . A l s o , t h e s y m b o l ^ i s m e a n t t o r e p r e s e n t a s u m 

m a t i o n o v e r a l l v a l u e s of m s u c h t h a t 7^ < o- A s i m i l a r m e a n i n g i s 

i m p o s e d o n ^ T h e t 
7>o-

e r m mo i s t h e v a l u e of m s u c h t h a t 7^ 
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and 

B(Y,T: =S 
+ 

• G ^ ^ , ( m , T ) + R a F ^ V i o { m , T ) ' 

<̂oL (—) + n — ) '^^ 
/ rno7r\ rmoTT -i 
l ^ - J - j ^ l l ( m o , T ) c o s [ — ( Y + 1)J 

Gj^Vi2(m,T) + RaFj^Vi3(m,T) *1 
72>o 

(^)-4f '̂-^)] 

(£|Zl)cos[ifI(Y + l)], (17) 

w h e r e the funct ions f^im.r) a r e def ined in Append ix C. 

F r o m e q u a t i o n s (15) and (16), a v e r a g e v a l u e s of the v e l o c i t y and 
t e m p e r a t u r e d i f f e r ence funct ions can be c a l c u l a t e d , u s ing the def in i t ions 

1 r^' 
UM(-r) = 7 / U(Y,T)dY, 

"^-1 

1 r' 
9 M ( 7 - ) = Y I 9(Y,T)dY, 

(18) 

(19) 

and 

0MM(-) = I ^ ) £ U(Y,T)e(Y,T)dY, (20) 

w h e r e 0 M M ( ^ ) ®̂ ^^^ m i x e d - m e a n t e m p e r a t u r e d i f f e r e n c e funct ion. The r e 
su l t s of c a r r y i n g out t he i n t e g r a t i o n s i n d i c a t e d in e q u a t i o n s (18), (19), and 
(20) a r e shown in Append ix D. 

F i n a l l y , N u s s e l t n u m b e r s can be def ined b a s e d on e i t h e r the m e a n 
t e m p e r a t u r e d i f f e r e n c e or the m i x e d - m e a n t e m p e r a t u r e d i f f e r e n c e . The 
s t a n d a r d def in i t ion for Nu is 

Nu = 
h • 2a 2a 

k ( T ^ - T f ) ' 
(21) 

w h e r e t he s u b s c r i p t W r e f e r s to the wal l and f to the fluid. The wa l l hea t 
flux, q w ' o3in be r e l a t e d to the a x i a l t e m p e r a t u r e g r a d i e n t . A, and the hea t 
g e n e r a t i o n r a t e by a s i m p l e o v e r a l l e n e r g y b a l a n c e , 
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q w = ^(p'^^x/iA- Q) 
M 

(22) 

w h e r e Uj^ is the m e a n ve loc i ty . Subs t i tu t ion of (22) into (21), and us ing the 
def in i t ions of the d i m e n s i o n l e s s q u a n t i t i e s , r e s u l t s in 

2 ( F - U i ^ ) 
Nu = g^ . ^f- ( T f - T ^ ) / a A . (23) 

Thus , the q u a n t i t i e s Nuj^ and Nu^- j^ can be defined a s 

Nu^^ = 2 ( F - U M ) / e M - ( " ^ ^ 

and 

N U M M = 2 ( F - U ^ , ) / M'/ "MM-
(23b) 

R E S U L T S AND DISCUSSION 

Effects of the H a r t m a n n N u m b e r 

The effects of the H a r t m a n n n u m b e r ( e s s e n t i a l l y a m e a s u r e of the 
m a g n e t i c body fo rce r e l a t i v e to the v i s c o u s fo rce ) upon the d i m e n s i o n l e s s 
m e a n ve loc i ty and t e m p e r a t u r e funct ions and the N u s s e l t n u m b e r a r e 
shown in F i g u r e s 2, 4, and 5, r e s p e c t i v e l y . The ve loc i t y shown in t h e s e 

f i g u r e s is U J | X / G , or in t e r m s of p h y s i c a l q u a n t i t i e s , (/nuj^^/a ) / I - ^ P g j . 

In F i g u r e 2, the c u r v e l abe led M = 0 r e p r e s e n t s the following 
s i tua t ion : Ini t ia l ly the fluid is m o t i o n l e s s and at a u n i f o r m t e m p e r a t u r e ; 
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-

-
-
-
-
-
_ 
-
- / 

z>— 

1 1 1 1 

Pr/Pr,^ . 1 

Ro > 100 
Pr . 0 003 

F/G •• 0 

1 1 1 1 

1 1 

^ — 

^__X-— 

10 

20 

50 

1 1 

1 1 

r — < » - ^ 

T — oo — 

1 1 

1 

i — ' ^ 

-
— 

— 
-
_ 
— 
— 

1 " 

F i g - 2 

E l t c f t o f H a r t m a n n N u m b e r on 

T r a n s i e n t M e a n V e l o c i t y 

OlMENStONLESS TIME ( T ) 



15 

at zero time, the p re s su re gradient is suddenly increased to some constant 
level, and the wall temperature is changed a negligible amount. The fluid 
is then set into motion, and the velocity asymptotically approaches a steady 
value at some time T > 20, The curves labeled M = 2, 5, 10, 20, and 50 
represent situations in which an external magnetic field is instantaneously 
turned on, along with the p r e s su re gradient change. Since P r / P r j ^ = 1 in 
this figure (relatively small value of the magnetic diffusivity), the magnetic 
field is delayed in its penetration of the fluid, and as a result, and over
shoot and oscillation is observed for M greater than about 20. 

2.0 

1-5 

1.0 

0.5 

0 

n •> 

-

- / 

r-/ 

1 1 

-̂ ^̂ «-« 

1 1 

1 1 [ 

M 

Pr/Pr,„ = 1 

Pr /Pr , „» l 

M 

1 1 1 

1 

^ 20 

Ro 
Pr 

F/G 

50 

100 

1 

-

100 ~ 
0,005 
0 

_ 

-
1 

This oscillation can be 
eliminated entirely if P r /P r^^ » 1 
(very large magnetic diffusivity) 
as shown in Figure 3. The solid 
lines indicate the situations in 
which the magnetic field and p r e s 
sure gradient a re simultaneously 
changed and the fluid has a small 
magnetic diffusivity; the dashed 
lines a re for a fluid with an ex
tremely large magnetic diffusivity. 
The dashed lines equivalently rep
resent the cases in which the mag
netic field is allowed to become 
well-established before any changes 
in the p ressu re gradient. Thus, it 
appears that if a large magnetic 
field experiences a delay in pene
trating the fluid during the t ran

sient, damped flow oscillations will occur. If these oscillations are to be 
avoided, it is only necessary to establish the magnetic field before changing 
the p ressu re gradient. 

112-4416 

DIMENSIONLESS TIME ( T ) 

Fig, 3 

Effect of Magnetic Prandtl Number 
on Transient Mean Velocity 

Similar, but less pronounced, oscillations occur in the temperature-
difference function as shown in Figure 4. Increasing the Hartmann number 
is also observed to decrease the temperature difference between the fluid 
and the wall. 

Finally, the transient Nusselt number is shown in Figure 5. A 
decrease in the Nusselt number is noted as the Hartmann number increases, 
an undershoot occurring at M = 20, and oscillations at M = 50. In fact, 
the Nusselt number drops to about 65% of the steady value at M = 50. 
These oscillations do not occur if P r / P r ^ » 1 or if the magnetic field is 
established before the p ressu re gradient is changed. 
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Effect of Hartmann Number on Transient 
Mean Temperature Difference 
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Effect of Hartmann Number on 
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Effect of the Rayleigh Number 

Figures 6, 7, and 8 show the effect of the Rayleigh number (a mea
sure of free convection) upon the mean velocity, temperature , and Nusselt 
number, respectively. The curve labeled Ra = 0 in Figure 6 represents 
the following situation: The fluid is initially at rest and a very small mag
netic field is established; at zero time, the p ressu re gradient is suddenly 
increased and the fluid is put into motion, and the steady-state velocity is 
approached asymptotically. The curves labeled Ra = 10, 10^, 10^, and 10* 
represent the same situation except that the wall temperature (or wall 
heat flux) is also suddenly increased at zero time. Increased free-
convection effects ( larger Ra) decrease the mean velocity, and at sufficiently 
large values of Ra, some oscillation occurs. 
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— 
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Fig, 6. Effect of Rayleigh Number on 
Transient Mean Velocity 
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Fig, 7. Effect of Rayleigh Number on Transient 
Mean Temperature Difference 
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DIMENSIONLESS TIME (T) 

Fig, 8, Effect of Rayleigh Number on 
Transient Nusselt Number 

The following physical explanation can be proposed for this oscil
lation: For times slightly greater than zero, the motion of the fluid is 
pr imari ly controlled by the applied p re s su re gradient, and the fluid s ta r t s 
to accelerate . However, since the walls are uniformly heated, the temper
ature of the fluid increases and, because of buoyancy effects, the fluid ac 
celerates faster. But, as the fluid moves faster, a smal ler amount of heat 
per unit mass of fluid is absorbed by the fluid, and its temperature drops, 
decreasing the buoyancy effects, and slowing down the fluid. Now, as the 
fluid moves more slowly, a larger amount of heat per unit mass of fluid is 
absorbed by the fluid, increasing buoyancy effects, and thus increasing the 
velocity. This cycle is repeated over and over, finally damped by the 
thermal diffusivity of the fluid, and a steady-state condition is attained. 
The aforementioned oscillations in the temperature difference are not 
shown in Figure 7 since the scale does not permit the Ra = 10* curve to fit. 

The oscillations in the Nusselt number caused by flow and temper
ature oscillations are shown in Figure 8, Note that the Rayleigh number 
does not significantly affect the transient Nusselt number for values of 
Ra < 10^, For Ra = lO-*, there is an undershoot of the steady value of Nujyj 
by 23%, and at Ra = 1 O*, oscillation occurs with an undershoot of 52%, 
Although it is not indicated on these curves, these oscillations could be 
eliminated if a sufficiently large magnetic field is established before the 
pressure gradient and wall temperature (or heat flux) a re changed. 

Effect of the Thermal Prandtl Number 

The effects of the thermal Prandtl number upon the mean velocity, 
temperature difference, and Nusselt number are shown in Figures 9, 10, 
and 11, respectively. The curves represent the following case: Initially 
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there is no flow, and a small magnetic field (M = 5) is established. At zero 
time, the p re s su re gradient is suddenly raised to some constant value and 
a small change in wall temperature is allowed (Ra = 100). The family of 
curves represent the t ransient response of fluid with various thermal 
Prandtl numbers. 

For small values of P r ( < 0.008), the flow rate increases monotoni-
cally to its s teady-state value (see Figure 9). However, for P r g rea te r than 
about 0.030, the velocity overshoots the s teady-state value, and some osci l 
lation occurs . For Pr = 0.7, a very large overshoot occurs , but steady 
flow is reached quickly. This effect of Pr can be explained by the equations 
for Uj , ; in the case of no internal heat generation, Uj^ depends pr imar i ly 
on te rms like 

e x p [ - l ( ^ ) % i + P r ) ] c o s h ( i 7 T ) a n d e x p [ - l ( ^ ) N l + P r ) ] c o s ( l v ^ ^ ) , 

Thus, since for most cases 7^ > 0, only the t e rm with the hyperbolic cosine 
is discussed. For small positive values of T, the cosh dominates the value 
of the te rm, and as T inc reases , the value of the t e rm is damped by the 
negative exponential. Thus, since 7 depends upon P r in an approximately 
linear fashion, it can be seen that as P r increases , the initial r i se of this 
t e rm increases , but it is damped more quickly. Thus, for sufficiently 
large values of P r , little or no oscillation will occur. At infinite t ime, the 
effect of Pr vanishes, as inspection of the governing equations (14), (15), 
and (16) can determine (as long as P r is some presc r ibed multiple of Pr) , 

The only significant effect of the thermal Prandt l number upon the 
temperature difference and Nusselt number, as shown in Figures 10 and 11, 
is that the time required to reach steady state is increased as P r is de
creased. Only a slight oscillation is noted at P r = 0.08, 

Effect of Internal Energy Generation 

Since a current will flow through the fluid due to the motion of the 
electrically conducting fluid through the magnetic field, internal e lec t r ica l 
heating will occur. However, this is a nonlinear effect, and for simplicity 
as well as to generally determine the effect of this heating, a uniform in
ternal heat generation has been included in the analysis . Figures 12 and 13 
show the effects of internal energy generation (F/G) upon the mean velocity 
and temperature difference, respectively. Both figures represen t the fol
lowing case: The fluid is initially motionless, and a small magnetic field 
(M = 5) is established. At zero time, the p r e s su re gradient is suddenly 
increased, and the fluid s ta r t s to generate heat at a constant rate of F / G , 
(The wall temperature is also changed slightly,) 
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Figure 12 shows that internal energy generation will tend to increase 
the flow rate throughout the transient period, as well as at steady state. 
This effect is , of course, due to the buoyancy effects (free convection) that 
couple the momentum and energy equations. 

The effect of internal energy generation upon the tempera ture dif
ference can become important, par t icular ly early in the transient period. 
Figure 13 shows that the function ( - 9 J ^ / G ) becomes negative (the mean 
fluid temperature becomes greater than the wall temperature) for T > 0, 
although at steady state, it can be positive. Thus, the direction of heat 
flow can change during the transient , and the maximum unsteady tempera
tures attained can be quite different from the s teady-state values. 

For values of the paramete r F/G grea ter than about 0,036*, it is 
observed that the mean fluid tempera ture is always grea ter than that of 
the channel wall, so that heat always flows from the fluid to the wall. 

The steady-state mean velocity and tempera ture difference functions 
are shown in Table I for M = 5, Ra = 100, and P r = 0.003, 

Table I 

STEADY-STATE VELOCITY AND 
TEMPERATURE FUNCTIONS 

(-©M/G) X 10̂  

4,916978 
4,231264 

3,545549 
2,174325 
-0.5683022 

-3,310929 

( U M / G ) X 10^ 

14,21840 

16,67689 
19.13538 
24.04146 
33.87536 
43.70927 

F / G 

0 
0,005 
0.010 
0,020 
0,040 
0,060 

Effect of the Magnetic Prandtl Number 

As indicated in Figure 3 and discussed previously, flow oscillations 
can occur when the magnetic diffusivity is small . This section will inves
tigate the overall effect of the magnetic diffusivity (as measured by P r /P r^^ ) 
upon the flow and heat t ransfer and determine how large P r / P r j ^ must be 
for the solutions obtained for P r / P r m » 1 to be valid. 

Equations (10), ( l l ) , and (12).were solved using the analysis de
scribed in Appendix B for a rb i t ra ry values of P r / P r m ' ŝ d̂ using step-
changes in the p re s su re gradient and wall tempera ture . The resu l t s a re 

*By interpolation of the data in Table I. 
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shown in Figure 14. For convenience in the interpretation of the results , 
the ratio of the mean velocity at an a rb i t ra ry value of P r / P r to that at 
^^/^^m - 1 is presented as a function of P r / P r , ^ with the Hartmann 
number as a parameter . 

' ' ' '1 ' 

"̂ r̂—-
\ 

\ \ ^ _ 
A 
: \ 

- V. 
-

RQ 

F/G 

l | 1 1 

U • 0 

10 

20 

100 Pr 

0 r 

1 0 0 

, 1 , 

' M 

0-003 

1.0 

, , 1 

-

-
• 

-

_ 
-
-

Fig. 14 

Effect of Magnetic 
Prandtl Number on 
Transient Mean 
Velocity Ratio 

For large values of M (liquid-metal MHD generators normally 
operate at values of M near 100 to 500), the effect of P r /P r^^ is limited 
to values of P r / P r ^ ^ less than approximately 10. However, the total effect 
of Pr /Prj-^ upon the velocity is greatest for the largest values of M. The 
values of P r / P r m ^°''^ most liquid metals are greater than 1000 (Table Bl), 
so that the resul ts presented for P r /P r^^ » 1 can be used with confidence 
for liquid-metal MHD generators . 

Steady-state Values of the Nusselt Number 

Several values of the steady-state Nusselt numbers for various 
values of the Hartmann and Rayleigh numbers are shown in Tables II and III. 

Table II 

STEADY-STATE VALUES OF 
THE NUSSELT NUMBER FOR 

Ra = 100, P r = 0,003, AND F = 0 

N"M,ss 

11.76325 
11,70922 
11.56678 
11.51479 

M 

0 
2 
5 

10 

N^M.ss 

11.60041 
11,74976 
11,80548 

M 

20 
50 

100 
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Table III 

STEADY-STATE VALUES OF THE 
NUSSELT NUMBER FOR 

M = 5, Pr = 0,003, AND F = 0 

N"M,ss 

10.60981 
10.51462 
11.56678 

Ra 

0 
10 
10̂  

N"M,ss 

16.60019 
28,98351 

Ra 

10̂  
10* 

It is somewhat surprising that the s teady-state values of the Nusselt 
number do not depend strongly upon the Hartmann number. This is due to 
the decrease of the temperature differences as well as the flow rate with 
increases in M. 

SUMMARY AND CONCLUSIONS 

The effects of combined forced and free convection, a t r ansve r se 
magnetic field, internal energy generation, and fluid diffusive proper t ies 
upon the unsteady, fully-developed, laminar flow of an electr ical ly conduct
ing fluid through a vert ical paral le l -pla te channel has been analytically 
studied. An oscillatory approach to steady state occurs whenever the 
Hartmann or Rayleigh numbers a re large, or the thermal Prandt l number 
is near unity. Conversely, the oscillations a re largely damped by the dif
fusive character of the fluid, i.e., for very small or very large thermal or 
magnetic Prandtl numbers. Also, if a sufficiently large magnetic field is 
allowed to become established before the fluid is put in motion, little, if 
any, oscillation is observed. 

Unsteady fluid temperatures were found to be significantly different 
from the steady-state values for some ranges of the p a r a m e t e r s , so that 
any design of an MHD device must take cognizance of the s ta r t -up phenom
ena to prevent any untoward occurrence, e.g,, overheating of channel walls 
or boiling of the liquid. Also, it is conceivable that e lect r ical overloading 
could occur due to la rge-sca le flow oscillations in cer ta in cases . 
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A P P E N D I X A 

S p e c i a l i z e d T e m p e r a t u r e F i e l d 

F o r an u n s t e a d y , fully d e v e l o p e d flow to ex i s t , r e s t r i c t i o n s m u s t 
be p l a c e d on the t e m p e r a t u r e f ield. T h e s e r e s t r i c t i o n s wi l l be d e t e r m i n e d 
in th i s a p p e n d i x . 

D i f f e r en t i a t i ng e q u a t i o n (6), f i r s t wi th r e s p e c t to x and then y, r e 
s u l t s in 

and d i f f e r e n t i a t i o n of equa t ion (7) twice with r e s p e c t to x y i e l d s 

P 0. (A2) 
5xMy 

The cond i t i on on (T - Tj^) for a fully deve loped u n s t e a d y flow is then 

5 ^ ( T - T R ) _ ^ 

SySx 
(A3) 

or , if Tj^ i s t a k e n a s the wa l l t e m p e r a t u r e , Tj^ = T-w(x,t), the c r i t e r i o n 
(A3) b e c o m e s 

^'^ 0, (A3a) 
Sy3x 

so that T(x ,y , t ) = fi(x,t) + f2(y,t). If the r e a s o n i n g a s u s e d in R e f e r e n c e 12 
is fol lowed, it i s e a s i l y shown that fi(x,t) = Ax + f3(t), so that 

T(x ,y , t ) = Ax + f3(t) + i^iy.t). (A4) 

Now, s ince T - T R = T - T w = iz{v<t) - iz{a.,t) i s a funct ion of y and t only , 
T - T^̂ ^ c a n be s u b s t i t u t e d in to e q u a t i o n (6), r e s u l t i n g in 

Su a^u BQ S B X , , 1 . ^ „ (A'i) 

The l e f t - h a n d s ide of e q u a t i o n (A5) i s a funct ion of y and t only; t h u s , the 
r i g h t - h a n d s i d e c a n a t m o s t be a funct ion of y and t a l s o . H e n c e , l e t 
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But, if equation (A6) is differentiated with respect to y, and it is noted 
that S^p/dySx = 0 [from equation (7)], then, bi^/dy - 0, so that f4(y,t) = S(t), 
where S(t) is a prescribed function. 

Finally, the momentum and energy equations can be written as 
follows, noting the preceding arguments: 

lr-R0^P^^^^^(--w).S(t); (6a) 

bl , d^T 
_ + Au = aR — , p^-^^ + Au = aR ^ + ^z^_ . (8a) 

The above two equations, in conjunction with equation (5), constitute a 
description of unsteady, fully developed, convective, magnetohydrodynannic 
flow. 
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APPENDIX B 

Solutions of Equations (10), (11), and (12) 

The system of equations (10), (11), and (12), with the conditions 
(13) and (14), can be reduced to an ordinary differential system by 
expanding the dependent variables in Four ier ser ies . 

CO 

U(Y,T) = Y Urn(T) sin ^ ( Y + 1), 
m=o 

CO 

e(Y,T) = Y Sm(T) sin ^ ( Y + 1), (Bl) 

and 

B ( Y , T ) = J Bm(T)cos ^ ( Y + 1). 

By direct substitution, there resul ts 

i, ^ * (̂ )'"" - -«" • mm-- * ="'̂ '- '"' 
and 

^ + ( ^ ) ' e m = -Um + Fm(T) - Hm(r), (B4) 

with the initial conditions 

Um(0) = Umi. 

Bm(0) = Bmi, (^^) 

and 

9m(0) = Smi. 

where 

0m = J *(Y) sin HIII(Y + l)dY (B6) 



28 

for <P = Ui, B j , Si , and F , and w h e r e 

£ l l l i l ) . l l l l l ( l ) = _ i - ( l . c o s m 7 r ) . (B6a) 
G ( T ) H ( T ) m-rr 

The set of equa t ions (B2), (B3), and (B4) can now be o p e r a t e d on wi th 

the Lap lace t r a n s f o r m , r e s u l t i n g in 

. B „ . B„ . . (;^)'(p./p.„« = (=r)""' "'^•' 

B3a) 

a n d 

s ? m - emi + ( ^ y ^ m = " " m + F ^ - Hm, (B4a) 

w h e r e 

0 = f ° ° e - s t 0 ( T ) d T . (B7) 
- '0 

This l i n e a r , a l g e b r a i c se t of equa t ions can be so lved for B m . U m . 

and 9j„ to yie ld 

Bm = [ B m i + ( ^ ) U m ] / [ s . ( ^ ) V r / P r m ) ] , (BS) 

e m = ( e m i - U m + F m - H m ) / [ s + ( ^ ) ' ] . (B9) 

a n d 

-4-(^K^jl^(^r(^')[-(=?)l}"' (BIO) 
The g e n e r a l i n v e r s e t r a n s f o r m a t i o n of equat ion (BIO) is r e l a t i v e l y 

s t r a i g h t f o r w a r d . However , it p r e s e n t s a difficult c o m p u t a t i o n a l p r o b l e m 
due to the complex i ty of the d e n o m i n a t o r and i t s r o o t s . T h u s , to s u b s t a n 
t ia l ly r e d u c e the n u m e r i c a l work , the i n v e r s e t r a n s f o r m will be a c c o m 
pl i shed only for two va lues of the r a t io P r / P r m , which may be r ewr i t tp r , 



29 

a s V-^^/a. Us ing t h e s e two e x p r e s s i o n s , the e f fec t s of a l l o the r p a r a m e t e r s 
wi l l b e i n v e s t i g a t e d . Then, fixing a l l of the p a r a m e t e r s e x c e p t M and P r / 
P r , ^ , e q u a t i o n (BIO) wi l l be d i r e c t l y t r a n s f o r m e d , and the effect of P r / P r m 
wil l be s tud i ed . 

C a s e of P r = P r _ , 

If the t h e r m a l and m a g n e t i c d i f fus iv i t i e s of the fluid a r e equa l , 
equa t ion (BIO) can be c o n s i d e r a b l y s imp l i f i ed due to the equal i ty of P r and 
P r j ^ . T h u s , 

2 

( U m i + P r G m ) [ s + ( S l ^ ) ] + R a P r ( 9 m i + F m - Hm) - ( ^ ) M ^ P r B m i 

(BlOa) 

The i n v e r s e t r a n s f o r m of equa t ion (BlOa) can now be eas i l y ob ta ined 

Um(7-) 
U m i r r im-n\'\ SiT \ /mTTx^l S^T") 

RaPre 
/mTTV 

" i 2 } M ^ P r B m i 
(e^'"-e^^1 

P r G m T) r r /mTTN'^l S i T r / m 7 I \ ^ ] S 2 T \ 

, , i i ^ J [ F m ( T ) - H m ( T ) ] * ( e ^ ' " - e ^ n 
/ R a P r 
\ , S l 

( B l l ) 

w h e r e 

•:]• (1 + P r ) ± 

1/2 

i^'){\ - P r ) ^ - 4 ( ^ ) ' M ^ P r - 4 R a P r ] 

(B12) 

and 

S(7") * 02 (T) = 0 i (T- t )02 ( t )d t . 
Jo 

(B13) 
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From equations (B8) and (B9), the following expressions for Bm(''') and 
6^0(7") can directly be obtained in te rms of Um(''"): 

Bm(T) = Bmi e ( ^ ) U m ( T) * e 
-i-n B14 

and 

em(T) = ^mi e -(̂ f Um(T) - Fm(^) + Hm(T) - ( ^ ) 
(B15) 

The functions U ( Y , T ) , B ( Y , T ) , and e(Y,T) can now be determined by 

using equations (Bl), 

Case of Pr » P rm 

If the thermal and magnetic diffusivities of conducting liquids a re 
examined, it is found that Vm is usually nnuch larger than a. For sodium 
at 1300°F, VmA = P r / P r m ~930, while other liquids have even la rger 
values. Table Bl indicates the value of the ratio P r / P r m i°^ severa l of 
the more common liquid metals and other liquids. 

Table Bl 

VALUES OF THE RATIO P r / P r m 

Liquid 

M e r c u r y 
C e s i u m 
P o t a s s i u m 
Rubid ium 
NaK (78%K) 
L i th ium 
H2SO4 ( c o n c e n t r a t e d solut ion) 
NaCl (37% solut ion) 

T e m p e r a t u r e (°F) 

7 0 0 
100 
800 
800 
600 
400 

68 
68 

P r / P r m 

9.8 x 10* 
5.2 X 10^ 
1.3 X 10^ 
3.1 X 10^ 
8.4 X 10 ' 
1.0 X 10* 

~ 1 0 " 
~ 3 X 1 0 " 

Table Bl indicates that the assumption of Pr » Prj^^ should be valid 
for many liquids that are of interest in magnetohydrodynamic devices. 
Thus, if Pr /Pr^n is formally allowed to approach infinity in equations (B8) 
through (BIO), an approximate expression for the velocity, tempera ture , 
and magnetic fields can be obtained.' 

infinity. 
From equation (BIO), it can be shown that as ( P r / P r m ) approaches 
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,. - (Gm + ' ^ ) [ s + ( ^ ) ] + R a ( e ^ i + F ^ . H ^ ) . ( 2 M ^ B ^ i / m 7 r ) r s + ( : i l ! l f ] 
lim U n̂ = — — — L \ ^ / J 

(BlOb) 

The i n v e r s e L a p l a c e t r a n s f o r m of th i s e x p r e s s i o n can now be d i r e c t l y o b 
ta ined , r e s u l t i n g in 

[ - R a P r S m i + k + ( ^ ) 1 ( U m i - '-^^^^^)] 

I S4 - S5 J 

p r G m ( T ) [ s 4 + ( ! ^ ) ' ] + R a P r [ F m ( T ) - H m ( T ) ] l ^^^ 

\ ~ S4 - S5 J * ^ 

R a P r e m i . [ s 3 . ( : V ^ / ] ( U m i - ^ M ! £ l ^ V 

= 4 - =5 

> 2 T 

PrGm(T) [s5 •f ( ^ ) ] + R a P r [ F m ( T ) - Hm(T)] 

S4 - s = 

(B16) 

w h e r e 

= -(4^>—) M^Pr 1 

1/2 

( I ^ ) ( l - P r ) ^ - 2 P r M ^ ( i I i ^ ) ( l - P r ) 

(B17) •f M*Pr^ - 4 P r R a 

and the convolu t ion i n t e g r a l is defined in equat ion (B13). 

Le t t ing ( P r / P r m ) a p p r o a c h infinity in equa t ions (B8) and (B9) shows 

tha t Brr, a p p r o a c h e s z e r o , and S m = (9mi - Um + F m - H m ) / s +f J is un

changed . T h u s , 9m(T) c an be d e t e r m i n e d by us ing the r e l a t i o n (B15) and the 
r e s u l t for Um(7") in (B16). F i n a l l y , the funct ions U ( Y , T ) , 9 ( Y , T ) can be o b 
ta ined by us ing equa t ions ( B l ) . 

The a s s u m p t i o n that the m a g n e t i c diffusivity is m u c h l a r g e r than the 
t h e r m a l diffusivi ty i s t a n t a m o u n t to neg lec t i ng the induced m a g n e t i c field in 
e q u a t i o n s (5) t h rough (8). Thus , the app l ied m a g n e t i c field p a s s e s th rough 
the fluid with only a neg l ig ib le d i s t o r t i o n . 
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Case of Arbitrary P r / P r m 

To solve equations (B8) through (BIO) for a rb i t ra ry values of 
P r / P r , ^ , the only problem is the inverse transformation of equation (BIO). 
The first step is the calculation of the zeros of the denominator of 
equation (BIO); let these three zeros be called s^, s^, and S3 (these numbers , 
in general, will be complex). Then, the expression for Um may be r e 
written as 

Um = ^ ^ + ^ ^ + ^ ^ . (B18) 

where 

l l ^ ' = = . [ ( ^ n i ^ ^ ) ( ° n . ^ ^ ) ^ M « ^ i ^ r m - H r . ) - ( i f ) M ^ P . B ^ . / P . „ ] 

(B19) 

^ = = { ( = ? / (' ^ ^ ) ( = - ^ ^ ) ^ ^ ^ S r n i . F m - H r . ) - ( ^ ) M ^ P . B „ , / P . „ ] 

(B20) 

~ l = . [ ( = F r ( . . ^ ) ( 0 „ / ^ ) . K a ( « . . . K „ - H „ ) . ( = l . ) M ^ P . B „ . / p . „ ] 

(B21) 

and 

Now, 

S4 = S f ( s 3 - S3) + S ^ ( S 3 - S i ) + s f { S i - S2). 2^ (B22) 

Um(T) = A,(T) * e ^ ' ^ + A , ( T ) * e^^^ + A 3 ( T ) * e^^^ . (B23) 
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Similarly 
,2 ^T 

-'m V) = e "^ ^ M e^ ''' [ e m i - U m + F m - H m ] d t , (B24) 

" ' 0 

and 

,,, . . -(™)V./P.„)Y7'?)""-/"'""[B„,*(=?)U„]«^ 
•^0 ( B 2 5 ) 
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A P P E N D I X C 

Defini t ions of the F u n c t i o n s ^ , (m,T) 

P r / P r 

w--)=(T-")--^'W)=os(iy:7) 
— ] (1 -P r ) - 2Pr( ^—J + Ra) 

- A T 
^ 2 ( n i , r ) = 1 - e ^ 

V'jCmo.r) = —7 
mo 

. „ ( i y - ? ) | 

( c i ) 

P . . , ] e x p [ - I ( I I ^ ) ( i . P I ' ^ ^ c 
UPrCm r r 

7 r ' ( l + P r ) ' | ' " L 

^ (C3) 

W „ , . , = (^f . e - . ^ | ( n H ) ' e o s h ( l . . ) . i [ ( i : i E ) ' 0 - p . , - 2P . (Ra . MlHli^^)] s . „ h ( l . r ) | . 

°-(i-)^(¥r(H^^inh(i7.)]. 
- A T 

V'5(m,T) = 1 - e ' 

6(m, ) 

(C4) 

(C5) 

*t(m 

1=?) 
' ( l ^ ) 

( ^ ) * ( . - P r , 

V'7(mo,T) 

' ^^(MiniV.Ra) 

6 4 P r G m 

m > * ( l + P r ) 

.n(f^) (C6) 

-i(¥)'i-H'-[-:(T)''-

(Hsr--[-(^)V] 

*(r:fc)[-'-KT)''.'-H-[-i(=?r<-p'i]}. 

P r ) 

2 5 6 R a P r F r 

m§7T^(l + P r ) ^ 

(C7) 
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m m M ^ ; ^ + R a 

m̂  ( 1 - P r ) 

v(^r— + ^^1 

s.nh(-i-7T)l, 

(C8) 

* , (m,T) = f^im.T), Tpio{m,T) = f(,{m,T), ipnimo.r) = f^{mo,T). 

•>Plz{m,T) = ^5(m,T), •ii'i3(m,T) = ^8(m,T), Aj = j ( ^ ) (1+Pr ) . (C9) 

P r / P r m » 1 

M"--)--(^¥^l--) . , , . , . , . ( r f " ) ^e - - (= l= )^o . ( ^^ . ) 

^ 2 ( m , T ) = 1 - e 

V'3(mo,7") 

o.(|v^').(|i,)...(f^') 

P r G r 

/ n i ^ ' ^ ^ \ , , „ . M^Prl 
^ ^ ( 1 + P r ) + ^ 

m^TT^ m^w^Pr 

4 M * P r ^ \ / T 

m^TT^ (f) 
- A , T I RaPrFr 

Ai 
1 - ( l + A , T ) e " ^ 2 ' ^ 

(CIO) 

(Cll) 

- 2M^Pr^ 

(C12) 

« . , r , -.{^J. e-- | ( l f^)^ COS. ( i . . ) . 1[{^)\. - PT, - P.(MYl! , 2Ra 

^('5(m,T) = 1 - e ^ 

(C13) 

(C14) 
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*'(-•-> = {£)' (—) +n—) '""^ -[-(^1^^]^ra^^(^)1=-^"-=(T^ 

f (1 - Pr) + 2Ra •f M ' ( = f ) ' { ! - 2PT) - M'Prj sin ( ^ V ^ ^ j ^ 
(C15) 

G m P r f-,{m„,T) = —-— 1 - (1 +A2T)e 

<i 

/mnTT\2 

\ 2 
) ( 1 + P r ) 

•ApT 

+ M^Pr 

P r F r 

/moTTN^ 

(^YR 
V A2mo -nj 

exp 

(T)'i 1 - P r - M"Pr m̂  + A , T 

1 - P r - M-'Pr 

(C16) 

*•(-•-' = (;fj M^-^(=?r^-
-<-r 

-pr 4''Pr1 sinh (TI ' '^ )^ 

^,(m,T) = •!//io(m,T) = ^, i(mo,T) = ^i2(m,T) = ^,3(m,T) = 0; 

{^y 1 + P r ) + - M^Pr . 

(C17) 

(C18) 
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APPENDIX D 

Mean Velocity and Temperature Difference Functions 

The mean velocity and temperature difference functions as calcu
lated from equations (26), (27), and (28) a re 

U M M = 7 U(Y,T)dY / , \ m-TT/ 

7 ' < o 
odd m 

G j ^ ^ j ( m , T ) + R a F ^ ^ 2 ( m , T ) 

/ I - c o s mftTT \ V V / 

/m-TT 

\ 2 

mTT/ 

odd m 

) % M ^ ( H ^ ) % R a 

Gml' '4(m,T) -1. RaFm^l ' Jm.T) 

(=1^)% M^(if)% Ra (Dl) 

S M M = -J e(Y,T)dY X I Vm?:/ 

7 <o 
odd m 

Gn-lCzd^.T) -I- RaF il'tdm.T) 

(T;^-M^-

(^^^^) *'(-»•")+ YJ (^) 
7 ' > o 

odd m 

/ , \m7r/ 

1T1 = 1 
odd m 

. J-rmr/z) 

Mui-r) = 2u (T) / U(Y,T)9(Y,T)dY = \ 
G^lC, + R^iFm^z 

*3(m„,T) •( ^^•,(m„,T) -
"o -(m„7l/2) 'T 
— i - e 

•s 
Gm*4 + RaFj^l^s 

/m7:\ , 7/ rmT\ „ 

(D2) 

D3 

V 2 y • - • ' V 2 / 
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